Web API

DELMIA Apriso 2021 Technical Guide

‘lerotdde uspIm sseudxe Jiay) 0} 109[qNs SI SHJewWepe.) SeLIeIPISANS S} 0 SoWRISAS Jnesse Aue jo asn
'SIBUMO 9ADadSa. J1By) AQ PRUMO B.e SYJewape) JOUIO | “Sa1JUNOD JBUIO JO/PUE S BU) Ul SBIIBIPISGNS S} JO SBWRJSAS }nesse(Jo Sylewaped pata)siBod 10 sylewape.) [B10Je W W09 a.le
3110Xag pue ‘S3dIALIN ‘VIAOIG ‘VIA GE ‘avITVX3 ‘VIAOID ‘VITNINIS ‘VINTIA ‘VIAONIT ‘SMHOMAINOS 'VILvD ‘0B0o| Sag ey pue obo| ssedwo) au} ‘JONIIYIIXIAE ‘0stidy "sawisAg ynesseq 0202®

3DEXPERIENCE

p?? SESrENEL | The 3DEXPERIENCE’ Company

Web APl | DELMIA Apriso 2021 Technical Guide

Contents

1 Introduction
1.1 Prerequisites
1.2 Glossary
1.3 Whatis a RESTful API?
2 DELMIA Apriso Web API
2.1 APl Key
2.2 Access Token
2.2.1 Obtaining an Access Token
2.3 Authorization Flows
2.4 Adding a Client Application
2.5 Example: Calling a Standard Operation
2.5.1 Sample Scenario
2.5.2 Execution Parameters
3 Web API Client
3.1 Authorization
3.2 Adding a Web Service Provider
3.3 Functions
3.4 Default and Custom Headers
3.5 Debugging
3.6 Example: Calling an External Web API
4 References

2 -
2S DELMIA | Apriso

5

oo 01O Www

DASSAULT
SYUSTEMES

Web APl | DELMIA Apriso 2021 Technical Guide 3

1 Introduction

DELMIA Apriso exposes a RESTful API (see 1.3 Whatis a RESTful API?)which can be used
by a client, such as another instance of DELMIA Apriso or a different external application, to
access specific resources. For example, it is possible to publish Standard Operations to be
accessible in this manner. In this Technical Guide, this APl is referred to as the DELMIA
Apriso Web API.

In addition to exposing its own web API, DELMIA Apriso is also able to call RESTful APIs
made available by other providers using the Web API Client functionality. The Web API Client
is a JavaScript APl which can be used in the HTML Layout Editor's JavaScript tab in Process
Builder.

Importantly, DELMIA Apriso implicitly handles access token-based and API key-based
authorization, as well as the 3DPassport authorization framework. Access token authorization
is handled in compliance with the OAuth 2.0 Authorization Framework.

This Technical Guide is divided into two main parts:

» Section 2 DELMIA Apriso Web API provides detailed information on how to configure
DELMIA Apriso to make its web API available to client applications. In this scenario,
DELMIA Apriso acts as an API provider.

» Section 3 Web API Client focuses on how to call web APIs exposed by external providers
using the Web API Client. In this scenario, DELMIA Apriso acts as a client application with
respect to the third-party APls it consumes.

1.1 Prerequisites

Note that this guide is intended for a highly technical audience. Although it contains a
thorough overview of all the configuration steps needed to use DELMIA Apriso in either of the
capacities discussed above, the reader should already have a good understanding of the
purpose of web APIs and how to use them. Preferably, they should be familiar with the various
authorization flows typically used in the web API context, such as the access token flow
(according to the OAuth 2.0 Authorization Framework), and the API key flow. Knowledge of
the HTTP protocol, including request headers and HTTP methods (particularly GET and
POST), is also essential.

1.2 Glossary

This section provides an overview of key terms used in this document.

Base URL - the common part shared by each endpoint (see below) exposed by an API (for
the DELMIA Apriso Web API the base URL is http://{server_name}/Apriso/httpServices).

Client application — an application calling a web API exposed by a provider.

2 2
2S DELMIA | Apriso DS SESriEs

Web APl | DELMIA Apriso 2021 Technical Guide 4

Endpoint — endpoints indicate ways to access a resource (e.g., operations/{operationCode}).
Endpoints are appended to the base URL (see above) to form a complete resource URL
(e.g., http://{server_name}/Apriso/httpServices/operations/{operationCode}).

REST (Representational State Transfer) — a resource-oriented approach to designing APIs
(for more information on REST, see 1.3 Whatis a RESTful API?).

Scope — scopes restrict an application's access to resources exposed by an API by
determining which endpoints it can access (for more information, see Scopes).

STS (Secure Token Service) — DELMIA Apriso's web service where client applications can
request an access token, available at: http://{server_name}/Apriso/Portal/sts/2.0/token.
STS is used during the access token-based authorization flow.

Web API - an application programing interface which can be accessed using the HTTP
protocol. A web APl exposes specific features to client applications which can access
those features using predefined endpoints (see above).

Web service provider — a party exposing a web API for use by external applications (clients).

1.3 What is a RESTful API?

Representational State Transfer (REST) is an approach to designing web services. Any API
which follows this approach is called a RESTful APl or a REST API. As opposed to other
architectural styles (such as SOAP), RESTful APls are designed around resources, which
are any kind of object, data, or service that can be accessed by the client. Typically, the client
uses the HTTP protocol to interact with the resources by making requests (GET, POST, PUT,
DELETE, etc.) to the endpoints (or URLs) exposed by the provider of the API.

Developed using these design principles, the DELMIA Apriso Web API exposes specific
resources using endpoints such as:

http://{server_name}/Apriso/httpServices/operations

In this example, a GET request to the operations endpoint would return a list of all Standard
Operations published through the Web API on that particular DELMIA Apriso server. Note that
all endpoints share the same base URL: http://{server_name}/Apriso/httpServices.

0 A proxy server can be used when the RESTful APl is called.
The proxy server must be configured in the CentralConfiguration.xml file.

0 For a complete list of endpoints exposed by the DELMIA Apriso Web API, see the Web
API| Reference.

2 2
2S DELMIA | Apriso DS SisreMes

Web APl | DELMIA Apriso 2021 Technical Guide 5

2 DELMIA Apriso Web API

This section explains how to configure DELMIA Apriso so that an external application or
service, called a "client", is able to call its web API. It also contains an overview of the
authorization mechanisms used by the web API, presents the relevant configuration files, and
provides detailed examples of requests and responses.

Before using the DELMIA Apriso Web API, an external application or service has to prove that
it is authorized to access the resources exposed by that API. It does so by presenting specific
credentials, which DELMIA Apriso validates against the ones stored in its configuration files
and either grants the application access or refuses the request.

© Al the credentials needed by a client application to access the DELMIA Apriso Web
API, such as the APl key, client ID, and client secret, are stored in the
ClientApplications.xml file on the DELMIA Apriso server. For more information on how
to register an application as a client application, see 2.4 Adding a Client Application.

The DELMIA Apriso Web API supports two modes of authorization: APl key and access
token. The details of the two authorization flows are presented in the subsections below.

Default Response Format

The DELMIA Apriso Web API uses application/json as the default response format. Use the
Accept: application/xml header if you want to receive data in the application/xml format.

2.1 APl Key

In this authorization scenario, the client application authenticates its requests to the APl using
an APl key and a client ID. The two unique sequences of characters are attached to the
request using, respectively, the Authorization header with the Apikey scheme, and the x-client-
Application header:

GET http://{server_name}/Apriso/HttpServices/hello/apiKeySecured HTTP/1.1
Host: {server_name}

Authorization: ApiKey F2AXB652-8A37-4F5A-8A2E-1BDE1484DAES
X-Client-Application: @OF22E127-206E-4BE3-A1FC-1078F65A743A

The server then examines the request and validates the headers against the AP| key and
client ID defined in the clientApplications.xml file:

OF22E127-206E-4BE3-A1FC-1078F65A743A
FAAXB652-8A37-4F5A-8A2E-1BDEO484DAES

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 6

If the server fails to validate the provided credentials, it will refuse to authorize the request
(HTTP 4@1 Unauthorized). If authentication succeeds, the server will respond with HTTP 200 oK:

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Server: Microsoft-IIS/10.0
api-supported-versions: 2

Content-Length: 25

"Correct API Key passed!"

2.2 Access Token

The access token flow ensures much greater security than the API key since it additionally
requires the client application to pass Apriso Classic Portal authentication. It also offers
greater flexibility by restricting the application's access only to certain "scopes”, i.e. types of
resources (see Scopes).

! 3 Apriso Classic Portal has been deprecated.

2.2.1 Obtaining an Access Token

To gain access to the resources exposed through the AP, the client application needs to
authenticate its requests with an access token. To obtain the token, the application first has to
send an appropriate request to the Secure Token Service (STS) available at the following
address: http(s)://{server_name}/Apriso/Portal/sts/2.0/token (STS is an implementation of the
OAuth 2.0 Authorization Framework).

Three parties are therefore involved in the authorization process:

> Client application
» DELMIA Apriso server (STS)
» Resources

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 7

HTTP Request i

Read and

R —> Resources
manipulate data

Client Application

HTTP Response ‘

Scopes

Scopes restrict the application's access to resources by determining which endpoints it can
access. For example, in order to call Standard Operations exposed via the DELMIA Apriso
Web API, the client application needs the standard_operations scope so that it can use the
operations endpoint (the full resource URL would be as follows: http://{server_
name}/Apriso/httpServices/operations)

The following scopes are available in DELMIA Apriso out of the box:

standard_operations
personalization
cache

data_paging
message_processing

\ A A A A4

© See the Web API Reference to learn which scope or scopes to use for specific
resources.

(j) Scopes for which the client application can request an access token are configured in
the clientApplications.xml file, which is discussed in extensive detail in 2.4 Adding a
Client Application.

The following sample request generates an access token valid for the standard operations
scope:

GET http://{server_name}/Apriso/Portal/sts/2.0/token?client id=0F22E127-206E-4BE3-A1FC-
1078F65A743A&response_type=token&redirect _uri=http%3A%2F%2F{server_
name}%2FApriso%2Fmodules¥%2Foauth%2Foauth_callback.html&

&state=samplestring HTTP/1.1
Host: {server_name}
Accept: application/json

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 8

Authorization

The client application can obtain an access token from STS using any of the four supported
authorization flows:

» Implicit Grant (temporary user authorization)

» Authorization Code (refreshable user authorization)

» Resource Owner Password Credentials (the user's credentials are passed in the request
body)

» Client Credentials (application authorization)

O Foran in-depth discussion of the four authorization flows, see 2.3 Authorization Flows.

Once the access token has been obtained, the application can use it to make requests to the
API. The token should be placed in the Authorization header with the Bearer scheme:

GET http://{server_name}/Apriso/HttpServices/hello/tokenSecured HTTP/1.1

Host: {server_name}

Authorization: Bearer
ZX1KMGVYQW1PaUpLVjFRaUXDSmhiR2NpT21KSVV6STFOaUo5LmV5SnpZMj13WININk1uQmxjbk52YmdGc2FYcGhkR2x

2Ym1l4emRHRNVaROZ5WkY5dmNHVN1ZWFIwYdIlek1lpd21ZMnhwiWlc1MFgybGtIam9pTUVZNU1rVXhNamNOUVRBM1ITMD
BRalV6TFVFeFJrTXRNVEEZTOVZMk5UVTNORESCSW13aWFuUnBIam9pUVVSTINVNS IMQOpsY1hWcGNHMWxiblFpT21Ja
UxDSNNhDO5sYm50bE1gqb21NaUlzSW1semN5STZJa0Z3Y21semI5SXNIbUYXWKNINKk1rRndjbWx6Yn1Jc@1tVjRjQoOk2
TVRVeU1USXdOek15TW13aWItSm1IJam94T1RIeE1qQXpOek15Z1EuY3BWTzZ5amR3YmpoWVhVUEUwaVJsaGpxNOh5UW1
NRFNoYVVRaW81ZFROWQ==

If the server fails to validate the provided credentials, it will refuse to authorize the request
(HTTP 401 Unauthorized). If authentication succeeds, the server will respond with HTTP 200 oOK:

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Server: Microsoft-IIS/10.0
api-supported-versions: 2

Content-Length: 32

"Correct token passed as ADMIN!"

2.3 Authorization Flows

This section contains an overview of the four main flows which can be used to obtain an
access token:

» Implicit Grant
» Authorization Code

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 9

» Resource Owner Password Credentials
» Client Credentials

0 For detailed information on these authorization flows, refer to the OAuth 2.0
Authorization Framework.

! 3 Apriso Classic Portal referenced in this document has been deprecated.

Implicit Grant

HTTP method: GET

Requires Classic Portal authentication: Yes

Data transmission form: Query string in URL

Response form: Redirection to passed redirect URL

Required parameters:

> response_type — has to be set to "token" (lowercase letters)

> client_id — has to be equal to your registered client_id

> redirect_uri — has to be equal to one of the redirect URLs bound to the passed client_id

> scope — has to be set to one or more (comma separated) scopes bound to the passed
client_id

» Recommended parameters:

> state — can be a random string; this value will be sent back to the requesting application
with the response message to confirm that it is sent in response to your application’s
request; offers additional security

vvvyvyy

Example request:

GET http://{server_name}/Apriso/Portal/sts/2.0/token?client id=0F22E127-206E-4BE3-A1FC-
1078F65A743A&response_type=token&redirect uri=http%3A%2F%2F{server_
name}%2FApriso%2FApriso%2Fmodules%2Foauth%2Foauth_callback.html&scope=standard_

operations&state=somespecyficstring HTTP/1.1
Host: {server_name}
Accept: application/json

Example response:

HTTP/1.1 302 Found

Cache-Control: no-cache, no-store

Pragma: no-cache

Expires: -1

Location: http://{server_name}/Apriso/callback.html#access_token=

&token_type=Bearer&expires_in=3600&state=somespecyficstring
Content-Length: ©

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 10

Authorization Code

Step 1 (Authorization Request)

» HTTP method: GET

Requires Classic Portal authentication: Yes

Data transmission form: Query string in URL

Response form: Redirection to passed redirect URL

Required parameters:

> response_type — has to be set to "code" (lowercase letters)

client_id — has to be equal to your registered client_id

redirect_uri — has to be equal to one of the redirect URLs bound to the passed client_id

scope — has to be set to one or more (comma separated) scopes bound to the passed

client_id

» Recommended parameters:

> state — can be a random string; this value will be sent back to the requesting application

with the response message to confirm that it is sentin response to your application’s
request; offers additional security

vvVvyy

VAR VARV

Example request:

GET http://{server_name}/Apriso/Portal/sts/2.0/token?client id=0F22E127-206E-4BE3-A1FC-
1078F65A743A&response_type=code&redirect_uri=http%3A%2F%2F{server_
name}%2FApriso%2Fapriso%2Fmodules%2Foauth%2Foauth_

callback.html&scope=personalization&state=somespecificstring HTTP/1.1
Host: {server_name}
Accept: application/json

Example response:

HTTP/1.1 302 Found
Cache-Control: no-cache
Pragma: no-cache

Expires: -1

Location: http://{server_name}/Apriso/apriso/modules/oauth/oauth_
callback.html?code= &state=somespecificstring
Content-Length: ©

Step 2 (Access Token Request)

» HTTP method: POST
» Requires Classic Portal authentication: No
» Data transmission form: application/x-www-form-urlencoded in request body
» Response form: HTTP response content
» Required parameters:
> grant_type — has to be set to "authorization_code" (lowercase letters)
> code — use the code obtained in Step 1
> client_id — has to be equal to your registered client_id

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 11

D> client_secret — has to be set to your registered client_secret
> redirect_uri —the same one as in Step 1
» Recommended parameters:
> state — can be a random string; this value will be sent back to the requesting application
with the response message to confirm that it is sent in response to your application’s
request; offers additional security

Example request:

POST http://{server_name}/Apriso/Portal/sts/2.0/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

Host: {server_name}

Content-Length: 287

client_id=@F22E127-206E-4BE3-A1FC-1078F65A743A&client secret=1E274C15-CC57-4DB9-A740-
BB3930FDO7CE&code= &grant_type=authorization_
code&redirect_uri=http%3A%2F%2F{server_name}%2FApriso%2Fapriso%2Fmodules¥%2Foauth%2Foauth_
callback.html&state=somespecificstring

Example response:

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Content-Length: 470

{"access_token":

, "token_type

:"Bearer", "expires_

in":600, "refresh_token":
=a ":"somespecificstring"}

, 'state":

Refresh Token

» HTTP method: POST

» Data transmission form: application/x-www-form-urlencoded in request body

» Response form: HTTP response content

» Required parameters:

> refresh_token — use the refresh token obtained in Step 2

> grant_type — has to be set to "refresh_token" (lowercase letters)

Recommended parameters

> state — can be a random string; this value will be sent back to the requesting application
with the response message to confirm that it is sent in response to your application’s
request; offers additional security

v

Example request:

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 12

POST http://{server_name}/Apriso/Portal/sts/2.0/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: {server_name}

Content-Length: 100

refresh_token= &grant_type=refresh_
token&state=somespecificstring

Example response:

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Content-Length: 415

{"access_token":

, "token_type":"Bearer","expires_

in":600, "state":"somespecificstring"}

Resource Owner Password Credentials

HTTP method: POST

User credentials authentication: Standard Authentication or LDAP

Data transmission form: application/x-www-form-urlencoded in request body

Response form: HTTP response content

Required parameters:

> grant_type — has to be set to "password" (lowercase letters)

> login_type — has to be set to "standard" or "1dap" (lowercase letters; “standard” will be
chosen if no value is provided)

> username — the name of the user whose credentials will be used

> password — the password of the user whose credentials will be used

> scope — has to be set to one or more (comma separated) scopes bound to the passed
client_id

D> client_id — has to be equal to your registered client_id

» Recommended parameters:

> state — can be a random string; this value will be sent back to the requesting application
with the response message to confirm that it is sent in response to your application’s
request; offers additional security

vVvVvvyvVvyy

Request example:

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 13

POST http://{server_name}/Apriso/Portal/sts/2.0/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

Host: {server_name}

Content-Length: 159

grant_type=password&login_type=standard&username={username}&password=
{password}&scope=personalization&client_id=0F22E127-206E-4BE3-A1FC-
1078F65A743A&state=somespecificstring

Response example:

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Content-Length: 415

"access_token":

, "token_type":"Bearer","expires_

in":3600, "state": "somespecificstring"}

Client Credentials

» HTTP method: POST
» Requires Classic Portal authentication: No (the token is issued for the user defined in the
EmployeeID key in the <FlexNet.BackgroundProcessingContext> section in Central Configuration)
» Data transmission form: application/x-www-form-urlencoded in request body
» Response form: HTTP response content
» Required parameters:
> grant_type — has to be setto "client_credentials" (lowercase letters)
client_id — has to be equal to your registered client_id
client_secret — has to be set to your registered client_secret
scope — has to be set to one or more (comma separated) scopes bound to the passed
client_id
» Recommended parameters:
> state — can be a random string; this value will be sent back to the requesting application
with the response message to confirm that it is sent in response to your application’s
request; offers additional security

v vV Vv

Request example:

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 14

POST http://{server_name}/Apriso/Portal/sts/2.0/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: {server_name}

Content-Length: 174

grant_type=client_credentials&client_ id=0F22E127-206E-4BE3-A1FC-1078F65A743A&client
secret=1E274C15-CC57-4DB9-A740-BB3930FDO7CE&scope=personalization&state=somespecificstring

Response example:

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Content-Length: 417

{"access_token":

, "token_type":"Bearer","expires_

in":86400, "state":"somespecificstring"}

2.4 Adding a Client Application

Before accessing the DELMIA Apriso Web API, an external application or service needs to
obtain an access token or use an APl key (see 2 DELMIA Apriso Web API). To do so, the

application or service must first be registered as a client application. This section explains
how to add a client application in an access token-based flow and an API-key based flow.

All registered client applications and services are listed in the clientApplications.xml file
available in the following location on the DELMIA Apriso server:

» <drive>\Program Files\Dassault Systemes\DELMIA Apriso 2021\Website\CentralConfiguration

Default Client Applications

By default, clientApplications.xml already contains definitions of three clients which are able to
obtain access tokens from the Secure Token Service (STS):
» FlexNetProcessBuilder

» DELMIA Apriso Portal
» DELMIA Apriso ${WebAddress} (Where ${WebAddress} is resolved to server name)

O you change the <client1d> of DELMIA Apriso Portal, you also have to modify the
scripts.js file found in <drive>\Program Files\Dassault Systemes\DELMIA Apriso
2021\WebSite\Portal\Scripts, where you need to change the value of
TokenServiceClientId to that of <ClientId>.

D7S DASSAULT

SUSTEMES

2 _
2S DELMIA | Apriso

Web APl | DELMIA Apriso 2021 Technical Guide 15

New Client Application

To register a client application with DELMIA Apriso, add an entry in the ClientApplications.xml
file and restart DELMIA Apriso services.

An entry for a new client application should have the following general structure:

<ClientApplication name="{application_name}">
<ClientId>{client_id}</ClientId>
<ClientSecret>{client_secret}</ClientSecret>
<ApiKey>{api_key}</ApiKey>
<RedirectUris>
<Uri>{redirect_uri}</Uri>
</RedirectUris>
<Scopes>
<Scope name="{scope_name}"/>
</Scopes>
<SupportedGrants>
<Grant>{grant_type}</Grant>
</SupportedGrants>
</ClientApplication>

Each section has a specific meaning:

» <clientId> is the public ID of the client application which will be used for identification (the
preferred value format is GUID)
> <ClientSecret> is a private key assigned to the client application which is used when
requesting an access token (the preferred value formatis GUID)
> <Apikey> is a private key used for API key authorization (the preferred value format is GUID)
» <redirectUris> is a list of valid URLs that the Secure Token Service (STS) will send the
access token to (one of the URLs must be equal to
${WebRootURL}/Apriso/modules/oauth/oauth_callback.html)
> <scopes> is a list of valid scopes that the client application can request when obtaining a
token (see Scopes for a full list of default scopes)
> <supportedGrants> is a list of authorization flows supported by the client application. One or
more of the following grant types can be used:
> 1Implicit — the implicit grant type is used to obtain access tokens (it does not support the
issuance of refresh tokens)
> AuthorizationCode — the authorization code grant type is used to obtain both access
tokens and refresh tokens
> password — this grant type is suitable for clients capable of obtaining the resource owner’s
credentials (username and password)
D> ClientCredentials — the client can request an access token using only its client
credentials

© For detailed information on the authorization flows supported under OAuth 2.0,
see the OAuth 2.0 Authorization Framework.

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 16

Depending on which authorization mechanism (API key or access token) the client application
will be using, certain sections are obligatory:

Section APl key Access token
<ClientId> v v
<ClientSecret> v

<ApiKey> V4

<RedirectUris> v

<Scopes> v
<SupportedGrants> v

Once the client application is registered, restart DELMIA Apriso services. The application will
then be able to request an access token from STS or call the API using the provided API key.

2.5 Example: Calling a Standard Operation

If a Standard Operation has been published as a REST Web Service in Process Builder's
Web Service Manager, it can be called using the operations endpoint. The name of the
Standard Operation being called should be placed after the name of the service, e.g. http://
{server_name}/Apriso/httpServices/operations/{operationCode}.

© For more information on publishing Standard Operations in Process Builder, see the
Web Services Manager topic in the Process Builder Help.

© You can use a tool such as Fiddler or Postman to test GET and POST requests.

Security

Three security levels are supported when calling Standard Operations published through the
DELMIA Apriso Web API:

» Public
> APl Key
» Access Token

2.5.1 Sample Scenario

This sample scenario uses a simple Standard Operation (called "GetEmployee") with an SQL
Query Function which returns the employee's name based on the provided ID:

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 17

I: S0LQueryl
id | Count

|
1d [>
' name .EIITIE m:'

Figure 1 Sample Standard Operation

kL

The Operation uses the following SQL query:

select name from employee where id = @Id

The Operation has been published as a REST web service in the Web Services Manager (for
more information, see the Web Services Manager topic in the Process Builder Help).

For the sake of simplicity, the Operation's security level has been set to "Public", so that no
authorization headers are required (for more details on authorization headers, see 2.1 AP| Key
and 2.2 Access Token).

REST Web Service Properties = I@

General
Published service name

GetEmployee
URL
http /! W /Apriso/hittp Services /operations./Get Employee

Enable Web Service

Security
Securty level

[Public -

Alowed Apriso Roles (no Roles selected means access for everybody)

Details
Operation code fonly Active or Prototype operations)

GetEmployee Test][Refresh H Link...

Inputs / Outputs

Mame Type
Inputs

Id Char
Outputs

name List of Char

Help [ok || Cancel

Figure 2 REST Web Service Properties

To obtain more information about the Operation, make a GET request, using the Accept header
to determine the content-Type of the response (application/json Or application/xml):

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 18

GET
http://{server_name}/Apriso/httpServices/operations/GetEmployee HTTP/1.1

Accept: application/json
Host: {server_name}

O Al requests are made to the default revision of the Operation, unless a specific revision
is provided in the URL, e.g. http://{server_
name}/Apriso/httpServices/operations/GetEmployee/REV.001.001.

The API1 will give a response specifying the Operation's expected Inputs (1d: Integer)and
Outputs (Name: Listofchar), as well as a sample payload:

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Server: Microsoft-IIS/10.0
api-supported-versions: 1
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET

Date: Wed, 17 Jan 2018 13:21:42 GMT
Content-Length: 227

{

"Inputs":[
"Id: Integer"

])

"Outputs":[
"Name: ListOfChar"

1

"ExecutionParameters":{
"Inputs":{

"Id":1

}s
"ExecutionMode":1,
"JobPool" : "DEFAULT",
"Retries":1,
"SleepTime":1000,
"SynchronuousQueue" : "DEFAULT",
"Timeout" :5000

The ExecutionParameters section contains a sample payload which you can use as a template
for the body of your POST request.

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide

When making the request, use the Accept header again to determine the format of the
response: application/json Or application/xml. Content-Type should correspond to the format
used in the body of your request.

The required Inputs should be placed in the request's body. Other parameters, such as
ExecutionMode Or Timeout, are optional — if you do not provide them explicitly, defaults will be
used (see 2.5.2 Execution Parameters below for more details on available execution
parameters):

POST

http://{server_name}/Apriso/httpServices/operations/GetEmployee HTTP/1.1
Accept: application/json

Content-Type: application/json

Host: {server_name}

Content-Length: 234

{

"Inputs":{

"Id":1
¥
"ExecutionMode":1,
"JobPool" : "DEFAULT",
"Retries":1,
"SleepTime":1000,
"SynchronuousQueue" : "DEFAULT",
"Timeout" :5000

The APl returns a list of Outputs. In this case, itis the Name (System Administrator) associated
with the provided Id (1):

HTTP/1.1 200 OK

Cache-Control: no-cache

Pragma: no-cache

Content-Type: application/json; charset=utf-8
Expires: -1

Server: Microsoft-IIS/10.0
api-supported-versions: 1
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET

Date: Wed, 17 Jan 2018 13:36:36 GMT
Content-Length: 45

{
"Outputs":{
"Name" : [
"System Administrator"

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 20

2.5.2 Execution Parameters

<Provider name="OWM" friendlyName="Open Weather Map">

<ApiKey>

<Headers/>

<QueryString>qg=London& appid=d0e841fadf87e22e9fldef6d7407fe77</QueryString>
</ApiKey>

</Provider>

Apart from the expected Inputs, you can also provide a number of other execution parameters
which will be passed on to Job Executor. If an execution parameter is not provided, the default
value will be used (see Table 1 Execution Parameters below).

0 For more information about how jobs are executed in DELMIA Apriso, see the
Background Job Processing Technical Guide.

Parameter Description Default
ExecutionMode » o—In Process (will be executed synchronously inthe IS |1—
process) Synchronous

» 1—-Synchronous (will be executed synchronously by
Job Executor; 200 ok is returned if the job is successfully
executed)

» 2— Asynchronous (will be executed asynchronously by
Job Executor; 200 ok is returned if the job is successfully

queued)
JobPool The name of the Job Pool to be used. empty
Retries How many times the job is to be retried in case of failure. 1
SleepTime The interval between each job execution attempt (in 1000
milliseconds).
SynchronuousQueue| The name of the Synchronization Queue to be used. empty
Timeout The maximum amount of time allowed for the duration ofa |5000

single job execution (in milliseconds).

Table 1 Execution Parameters

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 21

3 Web API Client

DELMIA Apriso is able to call external APIs using the Web API Client, which is a JavaScript
APl which facilitates the consumption of APIs protected with an API key or an access token. It

can be used in the HTML Layout Editor's JavaScript tab in Process Builder (see the Process
Builder Help).

(j] Any entity which makes a web API available for use by other parties is called a web
service provider. In order to be able to call an external API from the Web API Client,
its provider must be added to the webserviceProviders.xml file (for more information, see
3.2 Adding a Web Service Provider).

Entity Manager X, webapitest - REV.001.00... X | -
@ webapitest - REV.001.000 b A New Step 1 | ¥ Validgate | | b TestRun «|
| css | JavaSeript \HTML ™,

/* Here you can type your JavaScript functions which you can use in HTML Editor. Press F1 for help «

var client = new Apr.WebAPI.OAuthClient("apriso™);
var url = “http://serverName.dscone.3ds.com/apriso/httpservices/operations/someMethod™;
client.Get{url, function(response) {
console. log(response);
}» function() {
console.log("ERROR");

1)l

4 | 11

Function Na*.rigation\\\ HTML Layout Editar I

Figure 3 Web API Client— HTML Layout Editor's JavaScript tab in Process Builder

3.1 Authorization

Depending on the authorization framework implemented by the API's provider, one of the
following client objects should be used in the HTML Layout Editor's JavaScript tab:

» Apr.WebAPI.OAuthClient — for an access token-based flow compliant with the OAuth 2.0
specification (this is an Implicit Grant flow)

» Apr.WebAPI.ApikeyClient —for an APl key-based flow

» Apr.WebAPI.ThreeDPassportClient — for 3DPassport authentication

Each client's constructor accepts the name of the provider to be used, for example:

var client = new Apr.WebAPI.OAuthClient("apriso");

This name must correspond exactly to the provider's name in webServiceProviders.xml:

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 22

<Provider name="apriso" friendlyName="DELMIA Apriso Web API">

Once the correct client has been instantiated, it can be used to make requests to the API:

client.Get(url, function(response) {
console.log(response);

}, function() {
console.log("ERROR");

s

3.2 Adding a Web Service Provider

Any entity which makes a web service (an API) available for use by other parties is called a
web service provider. To be able to call an external web service, you must first add its provider
to webserviceProviders.xml, along with any information required to call the web service, as
described farther down in this section.

The webserviceProviders.xml file is available in the following location on the DELMIA Apriso
server:

» <drive>\Program Files\Dassault Systemes\DELMIA Apriso 2021\Website\CentralConfiguration
To register a web service provider with DELMIA Apriso, first register your application with the
provider, obtain the necessary configuration details (such as the endpoint, client ID, APl key,

etc.) from the provider, and finally add an entry in the webServiceProviders.xml file and restart
DELMIA Apriso services.

© Before registering a provider, you should familiarize yourself with its documentation,
particularly with the methods of authenticating your requests.

Default Web Service Providers

By default, webservicepProviders.xml already contains the "apriso" provider, which enables
calling the DELMIA Apriso Web API (for more information, see 2 DELMIA Apriso Web API).

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 23

New Web Service Provider

To register a new web service provider with DELMIA Apriso, add an entry in the
WebServiceProviders.xml file and restart DELMIA Apriso services.

© The name of the provider, which must be unique, is used by the Web API Client.
friendlyName is used by the Web Service Function in Process Builder (for more
information, see Process Builder Help).

An entry for a web service provider may contain one or more of the following sections
corresponding to the authorization methods it supports:

» <oauth> for access token-based authentication
» <apikey> for APl key-based authentication
» <ThreeDPassport> for 3DPassport authentication

Assuming a provider supports all three available authorization mechanisms (an access token,
an APl key, and 3DPassport), its entry in webServiceProviders.xml would look like this:

2 | 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 24

<Provider name="myProvider" friendlyName="My Provider">
<OAuth>
<Implicit>
<AuthorizationUri>${WebRootURL}/Portal/sts/2.0/token</AuthorizationUri>
<ClientId>A@6FDE50-B9C8-41E1-9D14-F7D3737F96E1</ClientId>
<RedirectUri>${WebRootURL}/Apriso/modules/oauth/oauth_callback.html</RedirectUri>
<Scope>personalization,standard_operations, cache,data_paging</Scope>
</Implicit>
<ClientCredentials>
<AuthorizationUri>${WebRootURL}/Portal/sts/2.0/token</AuthorizationUri>
<Body>client_id=A@6FDE50-B9C8-41E1-9D14-F7D3737F96E1&client_secret=77843C4F-18F0-
4432-BBFD-25467BCEF116&grant_type=client_
credentials&scope=personalization, standard_operations,cache,data_paging</Body>
<AuthorizationHeader/>
<QueryString/>
<HttpMethod>POST</HttpMethod>
</ClientCredentials>
</OAuth>
<ApiKey>
<Headers>
<Header>Authorization: ApiKey EE81825C-C6A0-47E4-9916-75A059B38DE9</Header>
<Header>X-Client-Application: A®6FDE50-B9C8-41E1-9D14-F7D3737F96E1</Header>
</Headers>
<QueryString/>
</ApiKey>
<ThreeDPassport>
<AuthorizationUri>https://{address}/iam/login</AuthorizationUri>
<Server>
<Username>user</Username>
<Password>password</Password>
</Server>
</ThreeDPassport>
</Provider>

<0OAuth>

The <oauth> section contains information required to call an access token-protected API.
Currently, two authorization flows are supported: <implicit> and <ClientCredentials>. Any other
flows will be ignored. For detailed information on authorization flows, see 2.3 Authorization
Flows.

» <authorizationuri> is the URL of the provider's token service
» <Implicit> —the implicit authorization flow (this is the default flow for the Web API Client)
D> <clientId> is the public ID of your registered client application or service, which will be
used for identification
D> <redirectUri> is the URL where the access token will be sent
(${webRootURL}/Apriso/modules/oauth/oauth_callback.html)
D> <scope> is @ comma-delimited list of the requested scopes (for more information on what
scopes are, see Scopes)

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 25

» <ClientCredentials> — the client credentials authorization flow (this is the default flow for the
Web Service Function in Process Builder; it is also used for machine-to-machine
authentication)
> <Body> is the body of the request (use query-string formatting, i.e.
"fieldl=valuel&field2=value2")

D> <AuthorizationHeader> is the provider-specific authorization header

> <Querystring> is the query string to be attached to the request (if required by the provider).
Use "g&" to separate individual parameters (e.g.
parameter1=value1&parameter2=value2)

D> <HttpMethod> is the HTTP method to be used, which can be either POST (default) or GET

<ApiKey>

The <apikey> section contains information required to call a key-protected API.

» <Headers> is the list of headers to be used with the request
D> <Header> should have the "Field: value" format (e.g., Authorization: Apikey ABCD1234)

> <Querystring> is the query string to be attached to the request. It should be used to pass any
parameters required by the provider which will not change in runtime. Use "&" to
separate individual parameters (e.g. parameteri=valuel&parameter2=value2).

<ThreeDPassport>

The <ThreebpPassport> section contains information required to call a web service which uses
3DPassport authentication.

(j) Any server calling 3DPassport services must have HTTPS enabled. For more
information, see the Enabling HTTPS section in the Security Implementation Guide.

» <authorizationUri> is the 3DPassport login page
» <server> contains credentials to be used for 3ADPassport authentication (they will be used by
the Web Service Function in Process Builder when making calls to web services using

3DPassport authentication)
> <Username>
> <Password>

3.3 Functions

The Web API Client offers four function variants for each of the supported HTTP verbs (GeT,
DELETE, POST, and PUT):

> GET

D> Get (url)

D> Get (url, headers)

D> Get (url, successCallback, errorCallback)

D> Get (url, successCallback, errorCallback, headers)
» DELETE

> Delete (url)

D> Delete (url, headers)

2 | 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 26

D> Delete (url, successCallback, errorCallback)

D> Delete (url, successCallback, errorCallback, headers)
» POST

D> Post (url, data)

D> post (url, data, headers)

D> post (url, data, successCallback, errorCallback)

D> Post (url, data, successCallback, errorCallback, headers)
> pUT

> put (url, data)

> put (url, data, headers)

D> put (url, data, successCallback, errorCallback)

D> put (url, data, successCallback, errorCallback, headers)

Where:

» urlis the endpointto be used
» headers are the request's headers

i I Content-Type header must be provided with all POST and PUT requests (for more
information, see 3.4 Default and Custom Headers)

» successCallback is the function to be called if the request is successful
» errorCallback is the function to be called if the request fails
> datais the payload to be attached to the POST request

|0 Not all clients support all four verbs (see the table below).

GET DELETE POST PUT
OAuthClient v/ v v v
ApiKeyClient v v v v
ThreeDPassportClient v

GET / DELETE

Below is an example of a GeT request in an access token-based flow (the same example could
be used with API key and 3DPassport authentication, where Apikeyclient and
ThreeDPassportClient would be used respectively instead of oauthclient):

var client = new Apr.WebAPI.OAuthClient("apriso");

var url = "http://serverName.dsone.3ds.com/apriso/httpservices/operations/operationCode";
client.Get(url, function(response){ console.log(response); }, function(){ console.log
("ERROR"); 1});

If no callbacks are specified, the function returns a promise (for more information on promises,
refer to MDN web docs):

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 27

var client = new Apr.WebAPI.OAuthClient("apriso");

var url = "http://serverName.dsone.3ds.com/apriso/httpservices/operations/operationCode";
var getPromise = client.Get(url);
getPromise

.then(function(response){ console.log(response); })
.catch(function(){ console.log("ERROR"); });

POST / PUT

Below is an example of a posT request in an access token-based flow (in an API key-based
flow, Apikeyclient would be used):

var client = new Apr.WebAPI.OAuthClient("apriso");

var url = "http://serverName.dsone.3ds.com/apriso/httpservices/operations/operationCode";
var data = {"Inputs":{"Example":1}};

var headers = {"Content-Type":"application/json"};

client.Post(url, data, function(response){ console.log(response); }, function(){

console.log("ERROR"); }, headers);

If no callbacks are specified, the function returns a promise, for example:

var client = new Apr.WebAPI.OAuthClient("apriso™);
var url = "http://serverName.dsone.3ds.com/apriso/httpservices/operations/operationCode";
var data = {"Inputs":{"Example":1}};

var headers = {"Content-Type":"application/json"};
var getPromise = client.Post(url, data, headers);
getPromise
.then(function(response){ console.log(response); })
.catch(function(){ console.log("ERROR"); });

3.4 Default and Custom Headers

When making a posT request, provide the content-Type header, which can be application/json
or application/xml depending on the format of the payload data.

If content-Type is not defined, application/json is used by default.

If not explicitly overridden, the following Accept header is used with each request:
Accept: application/json, text/javascript.

You can also provide your own custom headers. To do so, use a JSON object ora JSON
string. For example, in the code snippet below the headers variable ensures that an XML
documentis returned in the response:

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide

var headers = {"Accept":"application/xml", "Content-Type":"application/json"};

3.5 Debugging

When debugging the Web API Clientin the DELMIA Apriso Portal or Apriso Classic Portal,

you can use the developer tools in your Internet browser of choice.

! 3 Apriso Classic Portal has been deprecated.

o
: | Consocle
I & top A Filter Default levels ¥ # Group similar

The value "devicedpi™ for key "target-densitydpi®™ is invalid, TransactionPage.aspx:9
and has been ignored.

The key "target-densitydpi” is not supported. TransactionPage.aspx:9

DevTools failed to parse SourceMap: hitp://f JAprisofPortal /Kiosk/DependencyH
andler.axd/screen.js.map

» var client = new Apr.WebAPI.OAuth{lient("delmia");
client.get("https://f Japriso/httpservices/api/framework/hello/
tokenSecured”);

¥ Promise {<pending>}

¥ __oroto__: Promise
B catch: F catch()
B constructor: F Promise()
B Ffinally: £ Finally{)
B then: F then()
Symbol(Symbol.toS5tringTag): "Promise™
» __proto__: Object
[[PromiseStatus]]: "pending®
[[PromiseValue]]: undefined

> |

Figure 4 Web API Client debugging in the DELMIA Apriso Classic Portal

28

However, be aware that in the DELMIA Apriso Portal, the Web API Client script is linked at the

level of the iframe which displays the content window (contentwindow). You should therefore

refer to this iframe when using the Client (replace #iframe_id with the ID of the iframe, or use its

class to identify it):

var iframe = $("#iframe id");
var client = new iframe.contentWindow.Apr.WebAPI.OAuthClient("apriso");
client.Get("https://{server}/apriso/httpservices/api/framework/hello/tokenSecured");

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 29

3.6 Example: Calling an External Web API

This section contains a detailed walk-through on using an API from inside DELMIA Apriso.
Two authentication scenarios are presented:

» OAuth Authentication
» API Key Authentication

To best illustrate the process in real-life conditions, two publicly available REST APIs are
used as examples (Gmail and OpenWeatherMap). You should therefore become familiar with
both APIs' documentation to fully understand the configuration steps presented in this section.

© Note that both scenarios are based on the assumption that you already have the
necessary credentials to authorize requests (API key and client ID).

OAuth Authentication

This sample scenario shows how to obtain a list of messages in a user's inbox from the Gmail
API (using DELMIA Apriso's Web API Client. All examples in this scenario will use a mock
client ID, which should be replaced with valid credentials when making requests to the API.

0 A Gmail account is required to complete the procedure below.

Procedure:

1. Follow the instructions in Implementing Server-Side Authorization at Gmail API
documentationto register your application (DELMIA Apriso) and obtain a client ID.

Client ID:

887456409710-bv7a838sqvbofb6lc6gq8ou7u7ctigqig.apps.googleusercontent.com

2. Consult Gmail APl documentation to learn which endpoint to use, how to authenticate
requests, and which scopes are required to list a user's messages.

A list of all messages in a user's inbox can be obtained from the messages endpoint (replace
{user_email_address} with a specific email address):

https://www.googleapis.com/gmail/v1l/users/{user_email address}/messages

The access token can be obtained from the authorization URL below:

https://accounts.google.com/o/oauth2/auth

Read operations on a user's account require the following scope:

https://www.googleapis.com/auth/gmail.readonly

DASSAULT

2 _ 2
2S DELMIA | Apriso DSSHSTEMES

Web API | DELMIA Apriso 2021 Technical Guide 30

3. Add Gmail to webServiceProviders.xml (for more information, see 3.2 Adding a Web Service
Provider) and restart DELMIA Apriso services.

<Provider name="Gmail" friendlyName="Google Mail">
<OAuth>
<Implicit>
<AuthorizationUri>https://accounts.google.com/o/oauth2/auth</AuthorizationUri>
<ClientId>887456409710-
bv7a838sqvbofb6lc6q8ou7u7ctiq2ig.apps.googleusercontent.com</ClientId>
<RedirectUri>${WebRootURL}/Apriso/modules/oauth/oauth_callback.html</RedirectUri>
<Scope>https://www.googleapis.com/auth/gmail.readonly</Scope>
</Implicit>
</OAuth>
</Provider>

4. Use the following code snippet to call the API from within an Operation in Process Builder
(for more information, see 3 Web API Client):

var client = new Apr.WebAPI.OAuthClient("Gmail");

var url = "https://www.googleapis.com/gmail/vl/users/{user_email address}/messages”;
client.Get(url, function(response){ console.log(response); }, function(){ console.log
("ERROR"); 1});

©® Notethata pop-up will appear asking the user to log in to Gmail and authorize your
application's access to their data.

5. The API should return a JSON object in response body:

{"ok":true, "status":200, "statusText":"","headers":"date: Tue, 22 May 2018 10:34:14
GMTcontent-length: 153expires: Tue, 22 May 2018 10:34:14 GMTserver: GSEetag:
"Mr5G1ppowl6hK9x9KiNoxDVbWS4/EPCHU2HZVNCB55qVjYKOPKCX-Yo" content-type: application/json;
charset=UTF-8vary: Origin, X-Origincache-control: private, max-age=0, must-revalidate,

no-transform”,"data":"{ "messages": [{ "id": "1638734affd81fa3", "threadId":
"1638734affd81fa3" }, { "id": "1638734ae6741cc2", "threadId": "1638734ae6741cc2" }, {
"id": "1638734acl66f6a7", "threadId": "1638734ac@66f6a7" }, { "id": "1638734a82e9c460",

"threadId": "1638734a82e9c460" }], "resultSizeEstimate": 4}"}

API Key Authentication

This sample scenario shows how to obtain current weather data for the city of London from
OpenWeatherMap APl using DELMIA Apriso's Web API Client. All examples in this scenario
will use a mock API key, which should be replaced with a valid key when making requests to
the API.

Procedure:

1. Follow these instructions to create an account with OpenWeatherMap and obtain an API
key: https://openweathermap.org/appid.

APl key:

DASSAULT

2 _ 2
2S DELMIA | Apriso DSSHSTEMES

https://openweathermap.org/appid

Web APl | DELMIA Apriso 2021 Technical Guide 31

doeB841fadf87e22e9f1def6d7407fe77

2. Consult OpenWeatherMap APl documentation to learn which endpoint and parameters to
use, as well as how to authenticate requests.

Current weather data is available from the weather endpoint:

http://api.openweathermap.org/data/2.5/weather

The APl expects a q parameter with the name of the city. Additionally, the API key should
be provided in an appid parameter with each request for authentication purposes:

g=London&appid=dee841fadf87e22e9fldef6d7407fe77

Thus, the APl expects a GET request to the following URL.:

http://api.openweathermap.org/data/2.5/weather?q=London&appid=d@e841fadf87e22e9fldef6d74

07fe77

3. Add OpenWeatherMap to webserviceProviders.xml (for more information, see 3.2 Adding a
Web Service Provider) and restart DELMIA Apriso services.

© Note that the Headers section is empty because the APl does not expect any headers
to be provided with this request:

<Provider name="OWM" friendlyName="Open Weather Map">
<ApiKey>
<Headers/>
<QueryString>qg=London&appid=d0e841fadf87e22e9fldef6d7407fe77</QueryString>
</ApiKey>
</Provider>

4. Use the following code snippet to call the API from within an Operation in Process Builder
(for more information, see 3 Web API Client):

var client = new Apr.WebAPI.ApiKeyClient("OWM");

var url = "http://api.openweathermap.org/data/2.5/weather";

client.Get(url, function(response){ console.log(response); }, function(){ console.log
("ERROR"); 1});

5. The API should return a JSON object in response body:

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web API | DELMIA Apriso 2021 Technical Guide 32

{"coord":{"lon":-0.13,"1lat":51.51}, "weather":
[{"id":801, "main":"Clouds", "description"”:"few

clouds","icon":"@02d"}], "base":"stations", "main":
{"temp":288.15, "pressure":1016, "humidity":67, "temp_min":286.15, "temp_

max":289.15}, "visibility":10000, "wind" : {"speed":4.1,"deg" :360}, "clouds":
{"all":12},"dt":1526975400, "sys":

{"type":1,"id":5091, "message" :0.0036, "country":"GB", "sunrise" :1526961536, "sunset" :152701
8981}, "id":2643743, "name" : "London", "cod" : 200}

2 2
2S DELMIA | Apriso DS SGSTENEsS

Web APl | DELMIA Apriso 2021 Technical Guide 33

4 References

Internal Documentation

1. Web API Reference

This documentation is generated automatically and describes in detail the Web APls
delivered with DELMIA Apriso. It can be accessed on your DELMIA Apriso server (<server
name>/apriso/httpservices/help).

2. OAuth 2.0 Authorization Framework

This document contains the specification of the OAuth 2.0 Authorization Framework. It can
be found on the RFC Editor website.

3. Security Implementation Guide

Provides an overview of DELMIA Apriso security and information on effectively securing all
instances of DELMIA Apriso.

4. Central Configuration Documentation

Describes in detail all the keys of the Central Configuration (CC) file for DELMIA Apriso.
Various sections group the keys for individual modules or distinct functional areas.

5. Process Builder Help

Provides an overview of DELMIA Apriso Process Builder (PB) and information on installing
and using the application. This Help describes the user interface elements, entity
maintenance, available Business Controls, and management of Processes, Operations,
and Screen Flows.

6. Background Job Processing Technical Guide

Provides an overview of DELMIA Apriso Background Job Processing and presents
information on using the tool to its full potential.

3DS Support Knowledge Base

If you have any additional questions or doubts not addressed in our documentation, feel free to
visit the 3DS Support Knowledge Base at hitps://support.3ds.com/knowledge-base/.

All the internal documents referenced in this section are available from the DELMIA Apriso e
Start page, which can be accessed on your DELMIA Apriso server (<server name>/apriso/start). 2)
The newest versions of all documents are available from 3DS Support at: '
https://www.3ds.com/support/documentation/

3D
(A
3DEXPERIENCE

https://www.3ds.com/support/
https://www.3ds.com/support/documentation/
https://support.3ds.com/knowledge-base/

	1 Introduction
	1.1 Prerequisites
	1.2 Glossary
	1.3 What is a RESTful API?

	2 DELMIA Apriso Web API
	2.1 API Key
	2.2 Access Token
	2.2.1 Obtaining an Access Token

	2.3 Authorization Flows
	2.4 Adding a Client Application
	2.5 Example: Calling a Standard Operation
	2.5.1 Sample Scenario
	2.5.2 Execution Parameters

	3 Web API Client
	3.1 Authorization
	3.2 Adding a Web Service Provider
	3.3 Functions
	3.4 Default and Custom Headers
	3.5 Debugging
	3.6 Example: Calling an External Web API

	4 References

